Games are by nature multimedia experiences. A game engine therefore needs to be capable of loading and managing a wide variety of different kinds of media—texture bitmaps, 3D mesh data, animations, audio clips, collision and physics data, game world layouts, and the list goes on. Moreover, because memory is usually scarce, a game engine needs to ensure that only one copy of each media file is loaded into memory at any given time. For example, if five meshes share the same texture, then we would like to have only one copy of that texture in memory, not five. Most game engines employ some kind of resource manager (a.k.a. asset manager, a.k.a. media manager) to load and manage the myriad resources that make up a modern 3D game. Every resource manager makes heavy use of the file system. On a personal computer, the file system is exposed to the programmer via a library of operating system calls. However, game engines often “wrap” the native file system API in an engine-specific API, for two primary reasons. First, the engine might be cross-platform, in which case the game engine’s file system API can shield the rest of the software from differences between different target hardware platforms. Second, the operating system’s file system API might not provide all the tools needed by a game engine. For example, many engines support file streaming (i.e., the ability to load data “on the fly” while the game is running), yet most operating systems don’t provide a streaming file 297 298 6. Resources and the File System system API out of the box. Console game engines also need to provide access to a variety of removable and non-removable media, from memory sticks to optional hard drives to a DVD-ROM or Blu-ray fixed disk to network file systems (e.g., Xbox Live or the PlayStation Network, PSN). The differences between various kinds of media can likewise be “hidden” behind a game engine’s file system API.